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OutlineOutline

• Heterogeneous, nonstationary clutter
– Definitions, impact on STAP, numerical examples

• Prioritizing the challenge
– Architecture drivers

• Proposed KA-STAP architecture
• Knowledge-aided prediction/estimation

– Discussion of components, calibration requirements, application to 
simulated data

• Overview of discrete matched filtering
• Training strategies and requirements
• Constrained adaptive processor
• Other implementation considerations
• Summary
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Objective: Impact Next Generation RadarObjective: Impact Next Generation Radar
• Detecting slow moving targets in the presence of clutter and jamming 

(endo-clutter detection) is paramount
• STAP is critical technology, supports high area coverage rate (ACR) 

and overcomes diffraction-limited performance
• Minimum detectable velocity (MDV) and ACR are key metrics, but 

detecting and tracking high-priority targets also critical
• GMTI radar must operate effectively in complex, heterogeneous clutter 

environments and provide “cradle to grave” tracking capability

• Detecting slow moving targets in the presence of clutter and jamming 
(endo-clutter detection) is paramount

• STAP is critical technology, supports high area coverage rate (ACR) 
and overcomes diffraction-limited performance

• Minimum detectable velocity (MDV) and ACR are key metrics, but 
detecting and tracking high-priority targets also critical

• GMTI radar must operate effectively in complex, heterogeneous clutter 
environments and provide “cradle to grave” tracking capability
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What is Heterogeneous Clutter (Revisited)?What is Heterogeneous Clutter (Revisited)?
TargetsTargets--inin--Secondary Data (TSD) Secondary Data (TSD) ---- #1#1 Clutter Clutter Discretes Discretes –– #2#2

Varying Distributed Clutter Varying Distributed Clutter –– #3#3 Spectrally Mismatched Spectrally Mismatched –– #3#3

+/- 5 dB

* #2, #3’s: x-band, 2.1 m x 0.44 m SLAR, 6 
channels, Np=96, varVSC = 0.25 (unless noted)
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What’s Predictable? What’s Not?What’s Predictable? What’s Not?
• Clutter Doppler response predictable
• Clutter angular response, tied to Doppler, predictable 

but requires knowledge of array normal and manifold
• Distributed clutter amplitude partially predictable
• Clutter spectral characteristics difficult to predict
• Complex system response – e.g., array errors, 

radome and near-field scattering – difficult to predict

• Clutter Doppler response predictable
• Clutter angular response, tied to Doppler, predictable 

but requires knowledge of array normal and manifold
• Distributed clutter amplitude partially predictable
• Clutter spectral characteristics difficult to predict
• Complex system response – e.g., array errors, 

radome and near-field scattering – difficult to predict
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Requirements:
• Precise knowledge of platform 

velocity vector
• Platform pitch, roll and yaw
• Measured array normal

Requirements:
• Precise knowledge of platform 

velocity vector
• Platform pitch, roll and yaw
• Measured array normal
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KA Signal ProcessingKA Signal Processing
• Knowledge-aided signal processing…

– Aggregates information from observations and other data sources (in an 
environmental data base)

– Hypothesizes multiple, possible models and determines “best fit”
– Gathers evidence to substantiate hypotheses
– Provides feedback to adjust system response
– Captures expert reasoning in decision-making process
– Adapts reasoning and implementation to dynamics of environment

• Knowledge-aided signal processing…
– Aggregates information from observations and other data sources (in an 

environmental data base)
– Hypothesizes multiple, possible models and determines “best fit”
– Gathers evidence to substantiate hypotheses
– Provides feedback to adjust system response
– Captures expert reasoning in decision-making process
– Adapts reasoning and implementation to dynamics of environment

KA-STAP
Measurements + Predictions

Traditional STAP
Measurements ⇒….ˆ kR

Knowledge-Only STP
Predictions ⇒ ….k/PWR

0κ = 1κ =;   0 1κ ε ε= ≤ ≤

Fraction of   knowledgea prioriκ =
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KA STAP ArchitectureKA STAP Architecture
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• Constraints
• Algorithm
• Cal Info

Env. dBase
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INU/GPS – platform & antenna

Calibration Estimates

Estimated Clutter Properties

Cultural Database Information

Compensate
Angle-Doppler

Non-Stationarity

Compensate
Angle-Doppler

Non-Stationarity
CFARCFARkx kx
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INU/GPS – platform & antenna
Expert 
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Training Rules

KA Pre-Filter

• Algorithms
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Mode Change: Processing TimelineMode Change: Processing Timeline
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Generate SAR ImageGenerate SAR Image
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STAP

STAP
STAP

STAP

CFAR

kx 1/ 2−
KA/kR DMFDMF

Point & 
Extended
Discretes

Env. dBase

kx

INU/GPS – platform & antenna

Calibration Estimates

Estimated Clutter Properties

Cultural Database Information

kx

KA Pre-Filter

PDIPDI

CommentsComments:
• Distribution of power over frequency less 
efficient

• No PRI agility
• Sub-dwells avoid complex Tgt phs history

UsesUses:
• Generate non-
causal response

• Detect high-priority, 
time critical targets

• Image mover?!
QuestionsQuestions:
• Where to excise 
discretes?

• MDV advantages?
• Gain against TSD?
• Maximum dwell before 
target phase history too 
complex? (res. scaling)
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KnowledgeKnowledge--Aided Aided 
Prediction/Estimation (KAPE) StepsPrediction/Estimation (KAPE) Steps

(1) Determine array normal
(2) Estimate array manifold
(3) Remove strong discretes
(4) Estimate distributed clutter power

Variety of approaches: beamforming, Doppler 
filtering (like SAR), and super-resolution 
(smooth over snapshot)

(5) Form pre-filter(s) over angular limits using 
INU/GPS, DEM, and results from (4)

(6) Estimate spectral spread
(7) Ascertain performance (or, aggregate 

evidence)
(8) Iterate filter design

“Quick” solutions: interpolation, limited angular 
extent

Do this in parallel

(1) Determine array normal
(2) Estimate array manifold
(3) Remove strong discretes
(4) Estimate distributed clutter power

Variety of approaches: beamforming, Doppler 
filtering (like SAR), and super-resolution 
(smooth over snapshot)

(5) Form pre-filter(s) over angular limits using 
INU/GPS, DEM, and results from (4)

(6) Estimate spectral spread
(7) Ascertain performance (or, aggregate 

evidence)
(8) Iterate filter design

“Quick” solutions: interpolation, limited angular 
extent

Do this in parallel

kx 1/ 2−
KA/kR DMFDMF

Point & 
Extended
Discretes

Env. dBase

kx

INU/GPS – platform & antenna

Calibration Estimates

Estimated Clutter Properties

Cultural Database Information

kx

KA Pre-Filter
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Mapping Spatial Mapping Spatial Wavenumber Wavenumber Vector to True Vector to True 
North Direction VectorNorth Direction Vector
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West, y

platform 
velocity vector

array 
normal
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patch direction
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Use knowledge-derived information 
to determine linear transform…

Temporal steering vector

Spatial steering vector
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Estimating Array ManifoldEstimating Array Manifold

Requires Doppler centroid, 
performance often very good

Exploit nominally linear phase 
between channels over Doppler, 
non-zero intercept is error

De-trend adjacent 
channel range-
Doppler response

Performance improves as dwell 
increases

Adjacent channels exhibit max. 
overlap in data record

X-corr. adjacent 
channel pairs

Eigenvector spans multiple space-
time signals, performance poor

Same premise as above, average 
over fast- and slow-time

Max. eigenvector, 
spatial covariance

Eigenvector spans multiple space-
time signals, performance poor

Boresight clutter maximally projects 
onto max. eigenvector

Max. eigenvector, 
Doppler Centroid
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See App. 2
for further 

discussion…

See App. 2
for further 

discussion…
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Generating PreGenerating Pre--FilterFilter

( )

;    calibrated steering matrix;  
 diagonal clutter power matrix

H= =
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Power EstimatesPower Estimates

Physical model, estimate spreadPhysical model, estimate spread

Estimate array characteristicsEstimate array characteristics

* Can make CMT angle dependent

• Slope 
• Calibration
• Amplitude
• Spectral width

• Slope 
• Calibration
• Amplitude
• Spectral width

Key Factors

Form
S
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Estimates

Form
Power

Estimates
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1
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KA/kR −1/ 2 (1)KA/kR

CMT 3CMT 3
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INU/GPScal
• Array manifold

• Doppler and dither

• Compare spread 
with clutter type

Est. clut. props.

• Compare with 
clutter type

kx
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KAPE Performance: LKAPE Performance: L--Band ExampleBand Example
Array Errors & Cal.Array Errors & Cal.
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DMF ReDMF Re--VisitedVisited

−10 −5 0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Pixel SINR (dB)

F
ra

ct
io

n
 E

xc
ee

d
in

g
 V

al
u

e

AMF Exceedance

STAP Only            
STAP w/ Pre−Whitening

• Heavier tail due to discretes
•Threshold increase to maintain PFA

APTI

−30

−20

−10

0

10

20

Crossrange (m)

D
o

w
n

ra
n

g
e 

(m
)

Resolution Cell Power (dBsm)

−600 −400 −200 0 200 400 600 800 1000

−600

−400

−200

0

200

400

600

−20

−10

0

10

20

30

Crossrange (m)

D
o

w
n

ra
n

g
e 

(m
)

SAR Resolution Cell Power (dBsm)

−600 −400 −200 0 200 400 600 800 1000

−600

−400

−200

0

200

400

600

Approaches:
• CLEAN and decimate long dwell data
• Use KAPE
• Incorporate some fraction of discrete in training data
• Post-detection logic/CLEAN AMF

Approaches:Approaches:
• CLEAN and decimate long dwell data
• Use KAPE
• Incorporate some fraction of discrete in training data
• Post-detection logic/CLEAN AMF

More problematic More problematic 
at higher res.at higher res.

KAPE tracks power 
change over rng

When and how to remove When and how to remove discretesdiscretes??

1 dB/bin∆ =
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Training StrategiesTraining Strategies

NHD

PST

Roadways

Score

Training Data 
Bin #ra

ng
e

Doppler

kx ˆ
kR

INU/GPS – platform & antenna
Expert 

Reasoning
Training Rules

Track
Info

Training ObjectivesTraining Objectives:
1) Remove TSD (modified NHD, 

track info)
2) Mitigate clutter residue leading to 

increased PFA (constrained PST)
3) Prevent overnulling leading to 

signal cancellation (data 
screening)

4) Incorporate “expert reasoning,” 
based on analysis of key 
baseline scenarios, into sample 
selection strategy
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The Adaptive ComponentThe Adaptive Component

kx 1/ 2−
KA/kR DMFDMFkx ˆ kw

Compensate
Angle-Doppler

Non-Stationarity

Compensate
Angle-Doppler

Non-Stationarity

kx kx

kx
ˆ

kR

yk

Training Data 
Bin #

• Constraints
• Algorithm
• Cal Info

•Adaptivity employed to remove any correlated residual
•Adaptivity necessary when jamming present (removing strong clutter beneficial)
•Training is critical (avoid TSD, pre-filter stages ideally afford TSD-to-clutter 
enhancement)

•Constraints can include pre-adaptive nulls applied to regions of high reflectivity 
(Good calibration necessary to implement constrained beamformer)

•Post-Doppler techniques preferred, easier to train
• Important when KA applied only over limited regions, or when quality of knowledge 
questionable (especially calibration information)

•Adaptivity employed to remove any correlated residual
•Adaptivity necessary when jamming present (removing strong clutter beneficial)
•Training is critical (avoid TSD, pre-filter stages ideally afford TSD-to-clutter 
enhancement)

•Constraints can include pre-adaptive nulls applied to regions of high reflectivity 
(Good calibration necessary to implement constrained beamformer)

•Post-Doppler techniques preferred, easier to train
• Important when KA applied only over limited regions, or when quality of knowledge 
questionable (especially calibration information)
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Additional Implementation Additional Implementation 
ConsiderationsConsiderations

• How best to employ and queue 
site-specific tools?

– Identify impending challenges
• Regions rich in clutter 

discretes or TSD
– Compare estimated and 

anticipated results
• Developing “adaptable” expert 

rules, especially for training and 
constrained filtering

– “Learning” from sorties
• Determining “goodness” of 

implementation, iterating as 
necessary

• Implementing the best threshold 
setting
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Threshold setting still 
requires care…
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SummarySummary
• KA STAP involves…

– Aggregating information from observations and other data sources
– Hypothesizing plausible models for observed data
– Testing veracity of models
– Iterating (real-time!) design as necessary

• Proposed KA STAP architecture incorporates preceding elements
– KAPE: estimating angle-Doppler response using INU/GPS, power 

estimates, calibration, array normal estimation, conditioned on expected 
values determined using data base, iterating via filter bank design and 
feedback

– DMF: determining mode based on data base, scanning data for discretes, 
employing anticipated impulse response to deconvolve data, removing 
discretes

– Adjusting for clutter non-stationarity using a priori knowledge
– Expert reasoning applied to training step of adaptive stage

• Showed numerical examples rationalizing different steps
• Future work will involve integrating, testing and enhancing the whole 

architecture
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App. 1 App. 1 -- Heterogeneous Distributed ClutterHeterogeneous Distributed Clutter

* x-band, 2.1 m x 0.44 m SLAR, 6 channels, Np=96, varVSC = 0.25
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App. 2 App. 2 –– Comparison of CAL MethodsComparison of CAL Methods

With uncompensated 
errors, SINR loss null 
approaches 2x CNR

Range-Doppler and cross correlation methods yield very good performance

(dashed: error free; 0.5 dB/2o RMS errors at sub-array level)

Poor 
performance

Good
cancellation

Good
cancellation


